2025.03.27 | Dita跨模态策略优异,Qwen2.5-Omni多模态实时响应。

2025.03.27 | Dita跨模态策略优异,Qwen2.5-Omni多模态实时响应。

11分钟 ·
播放数147
·
评论数0

本期的 15 篇论文如下:

00:26 🤖 Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy(Dita:扩展扩散Transformer以实现通用视觉-语言-动作策略)

01:07 🤖 Qwen2.5-Omni Technical Report(Qwen2.5-Omni技术报告)

01:46 🧩 LEGO-Puzzles: How Good Are MLLMs at Multi-Step Spatial Reasoning?(乐高拼图:多模态大型语言模型在多步空间推理方面的表现如何?)

02:35 🎬 Wan: Open and Advanced Large-Scale Video Generative Models(万:开放且先进的大规模视频生成模型)

03:24 💡 Unconditional Priors Matter! Improving Conditional Generation of Fine-Tuned Diffusion Models(无条件先验至关重要!改进微调扩散模型的条件生成)

04:04 🔍 Open Deep Search: Democratizing Search with Open-source Reasoning Agents(开放深度搜索:通过开源推理Agent实现搜索的民主化)

04:44 🖼 GenHancer: Imperfect Generative Models are Secretly Strong Vision-Centric Enhancers(GenHancer:不完美的生成模型是隐藏的强大视觉中心增强器)

05:24 📊 BizGen: Advancing Article-level Visual Text Rendering for Infographics Generation(BizGen:推进信息图生成中的文章级可视化文本渲染)

06:01 🤖 Gemini Robotics: Bringing AI into the Physical World(Gemini Robotics:将人工智能带入物理世界)

06:39 🧠 MCTS-RAG: Enhancing Retrieval-Augmented Generation with Monte Carlo Tree Search(MCTS-RAG:利用蒙特卡洛树搜索增强检索增强生成)

07:22 🚀 AccVideo: Accelerating Video Diffusion Model with Synthetic Dataset(AccVideo:利用合成数据集加速视频扩散模型)

07:54 🖼 ViLBench: A Suite for Vision-Language Process Reward Modeling(ViLBench:一个用于视觉-语言过程奖励建模的套件)

08:33 💾 LogQuant: Log-Distributed 2-Bit Quantization of KV Cache with Superior Accuracy Preservation(LogQuant:通过卓越精度保持实现KV缓存的对数分布2比特量化)

09:12 🚗 ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems(ADS-Edit:面向自动驾驶系统的多模态知识编辑数据集)

09:55 🖼 Beyond Words: Advancing Long-Text Image Generation via Multimodal Autoregressive Models(超越文字:通过多模态自回归模型推进长文本图像生成)

【关注我们】

您还可以在以下平台找到我们,获得播客内容以外更多信息

小红书: AI速递