这一期的嘉宾因学生时期一张像孙中山的照片而被朋友们戏称为“国父”。“国父”在推荐系统领域有很多年的实践经验,也做过不同类型的推荐系统。这周我们就请专家来和我们深入聊一聊推荐系统是什么、怎么做、以及产品技术难点是什么。除了推荐系统,“国父”对于数据科学领域和数据驱动也都有很多思考。
在工作之外,本期嘉宾自认为有着“非典型”的成长经历。高考时交白卷,在高校研究所工作多年,很晚才进入业界。但也正因为此,他对个人的发展有不一样的思考。到底学历有什么意义?我们是荒岛上的猴子还是赛道上的赛马?赶快来听吧!
00:00:00 开场
00:01:24 在电商平台Pinkoi做推荐系统
00:03:49 推荐系统从Infra和数据收集开始
00:05:04 tracking和埋点
00:07:04 电商平台一定需要推荐系统吗?
00:10:13 原生广告公司Taboola的推荐系统
00:13:12 用户体验:内容推荐 v.s. 广告推荐
00:14:33 广告推荐和内容推荐在产品实现上的差别
00:16:47 推荐系统领域需要什么样的人才
00:19:33 广告推荐和内容推荐工程难度上的差别
00:21:47 觉得自己是一个data scientist还是一个engineer?
00:24:37 分析团队和工程团队的mindset差别
00:28:28 跳槽Taboola的契机
00:31:36 多文化融合的工作环境
00:33:54 如何快速的熟悉公司业务
00:38:53 空降manager如何管理团队
00:42:08 data-driven到底是好是坏
00:49:37 非典型的成长经历(吗?)
00:52:51 学历到底代表什么?
00:55:18 赛道上的赛马,还是荒岛上生存的猴子
00:56:53 Multi-armed Bandit对人生的指导意义
00:58:50 Amy和Stella做podcast的意外收获
01:01:28 生活中的发呆时间